Quasi-idempotents in finite semigroup of full order-preserving transformations
نویسندگان
چکیده
Let Xn be the finite set {1,2,3· · ·, n} and On defined by On={α∈Tn:(∀x, y∈Xn), x⩽y→xα⩽yα}be semigroup of full order-preserving mapping on Xn. A transformation α in is called quasi-idempotent if α=α2=α4. We characterise show that generated. Moreover, we obtained an upper bound forquasi-idempotents rank On, is, showed cardinality a minimum quasi-idempotents generating for less than or equal to ⌈3(n−2)2⌉ where ⌈x⌉ denotes least positive integerm such x⩽m<x+ 1.
منابع مشابه
Generating the Full Transformation Semigroup Using Order Preserving Mappings
For a linearly ordered set X we consider the relative rank of the semigroup of all order preserving mappingsOX on X modulo the full transformation semigroup TX . In other words, we ask what is the smallest cardinality of a set A of mappings such that 〈OX ∪A 〉 = TX . When X is countably infinite or well-ordered (of arbitrary cardinality) we show that this number is one, while when X = R (the set...
متن کاملOn the Imbedding of a Finite Commutative Semigroup of Idempotents in a Uniquely Factorable Semigroup.
A semigroup is a set of elements to which is related an operation usually called multiplication and an equivalence relation, such that the set is closed and associative relative to the operation. We shall discuss, briefly, finite semigroups which are uniquely factorable in the same sense as the multiplicative semigroup of all nonzero integers. Clifford' defined an arithmetic in such a way as to...
متن کاملextensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولQuasi-factors for Infinite-measure Preserving Transformations
This paper is a study of Glasner’s definition of quasi-factors in the setting of infinite-measure preserving system. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. Th...
متن کاملGroup Closures of Injective Order-Preserving Transformations
Given a group G of permutations of a finite n-element set Xn and a transformation f of Xn, the G-closure 〈f : G〉 of f is the semigroup generated by all the conjugates of f by permutations in G. A semigroup S of transformations of Xn is G-normal if GS = G, where GS consists of all the permutations h of Xn such that h−1fh ∈ S for all f ∈ S. We may assume that Xn is a chain and we let POIn be the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra and discrete mathematics
سال: 2023
ISSN: ['1726-3255', '2415-721X']
DOI: https://doi.org/10.12958/adm1846